Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289423

RESUMO

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Cistos , Humanos , Acanthamoeba castellanii/genética , Espécies Reativas de Oxigênio , Catalase
2.
Nat Protoc ; 19(1): 3-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964008

RESUMO

Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR-Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Humanos , Acanthamoeba castellanii/genética
3.
Parasitol Int ; 98: 102814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806551

RESUMO

Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 µM and 27.21 µM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.


Assuntos
Acanthamoeba castellanii , Amebicidas , Humanos , Acanthamoeba castellanii/genética , Ácidos Sulfônicos/farmacologia , Alcanossulfonatos , Genótipo
4.
Parasites Hosts Dis ; 61(4): 397-404, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38043535

RESUMO

Acanthamoeba species are free-living amoebae those are widely distributed in the environment. They feed on various microorganisms, including bacteria, fungi, and algae. Although majority of the microbes phagocytosed by Acanthamoeba spp. are digested, some pathogenic bacteria thrive within them. Here, we identified the roles of 3 phagocytosis-associated genes (ACA1_077100, ACA1_175060, and AFD36229.1) in A. castellanii. These 3 genes were upregulated after the ingestion of Escherichia coli. However, after the ingestion of Legionella pneumophila, the expression of these 3 genes was not altered after the consumption of L. pneumophila. Furthermore, A. castellanii transfected with small interfering RNS (siRNA) targeting the 3 phagocytosis-associated genes failed to digest phagocytized E. coli. Silencing of ACA1_077100 disabled phagosome formation in the E. coli-ingesting A. castellanii. Alternatively, silencing of ACA1_175060 enabled phagosome formation; however, phagolysosome formation was inhibited. Moreover, suppression of AFD36229.1 expression prevented E. coli digestion and consequently led to the rupturing of A. castellanii. Our results demonstrated that the ACA1_077100, ACA1_175060, and AFD36229.1 genes of Acanthamoeba played crucial roles not only in the formation of phagosome and phagolysosome but also in the digestion of E. coli.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Acanthamoeba castellanii/genética , Escherichia coli/genética , Fagocitose/genética , Fagossomos
5.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095310

RESUMO

Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Doença dos Legionários , Humanos , Macrófagos , Legionella pneumophila/metabolismo , Acanthamoeba castellanii/genética , Virulência/genética , Proteínas de Bactérias/metabolismo
6.
Diagn Microbiol Infect Dis ; 107(2): 116014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506594

RESUMO

Acanthamoeba keratitis is a devastating infectious disease of the cornea caused by an opportunistic amoeba, Acanthamoeba castellanii. It is poorly recognized, and diagnostic delays can lead to irreversible damage to the vision. The gold standard for diagnosis has been a sample culture that lasts approximately 2 weeks. Nevertheless, the essence of time has led to the need for an accurate and fast technique to detect A. castellanii from a sample. We developed both traditional and quantitative real-time-PCR-based methods to detect A. castellanii in less than 3 hours and with the sensitivity of one amoeba. Diagnostic laboratories can select the best-suited method for their purposes from 2 comparable methods. The correct treatment can be initiated from the emergency room when the diagnosis has been made quickly within a few hours, hence saving the patient from long-term complications.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Humanos , Acanthamoeba castellanii/genética , Testes de Diagnóstico Rápido , Ceratite por Acanthamoeba/diagnóstico , Córnea , Reação em Cadeia da Polimerase em Tempo Real
7.
Parasit Vectors ; 16(1): 215, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380986

RESUMO

BACKGROUND: Legionella spp. can survive and replicate inside host cells such as protozoa and macrophages. After enough growth, Legionella is released from the host cells as free legionellae or Legionella-filled vesicles. The vesicles support Legionella to survive for a long time in the environment and transmit to a new host. In this study, we identified the differentially expressed genes of Acanthamoeba infected by Legionella (ACA1_114460, ACA1_091500, and ACA1_362260) and examined their roles in the formation of the excreted vesicles and escape of Legionella from the Acanthamoeba. METHODS: After ingestion of Escherichia coli and Legionella pneumophila, expression levels of target genes in Acanthamoeba were measured by real-time polymerase chain reaction (PCR) analysis. The roles of target genes were investigated by transfection of small interfering RNA (siRNA). The formation of Legionella-containing excreted vesicles and the vesicular co-localization with the lysosomes were examined by Giemsa stain and LysoTracker stain. RESULTS: ACA1_114460, ACA1_091500, and ACA1_362260 were upregulated after ingestion of Legionella in Acanthamoeba. ACA1_114460- and ACA1_091500-silenced Acanthamoeba failed to form the Legionella-containing excreted vesicles. Legionella was released as free legionellae from the Acanthamoeba. When the ACA1_362260 of Acanthamoeba was silenced, Legionella-containing excreted vesicles were fused with the lysosome. CONCLUSIONS: These results indicated that ACA1_114460, ACA1_091500, and ACA1_362260 of Acanthamoeba played important roles in the formation of Legionella-containing excreted vesicles and inhibition of the lysosomal co-localization with the phagosome.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Legionella pneumophila/genética , Acanthamoeba castellanii/genética , Corantes Azur , Corantes , Endocitose , Escherichia coli , RNA Interferente Pequeno
8.
Nat Commun ; 14(1): 428, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702819

RESUMO

Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Vírus de DNA/genética , Sistemas CRISPR-Cas/genética , Acanthamoeba castellanii/genética , Vírus Gigantes/genética , Vírus/genética , Genoma Viral/genética , Filogenia , Evolução Molecular
9.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626774

RESUMO

AIMS: To determine the anti-amoebic activity of benzofuran/benzothiophene-possessing compounds against Acanthamoeba castellanii of the T4 genotype. METHOD AND RESULTS: A series of benzofuran/benzothiophene-possessing compounds were tested for their anti-amoebic activities, in particular, to block encystation and excystation processes in amoebae. Cytotoxicity of the compounds were evaluated using lactate dehydrogenase (LDH) assays. The amoebicidal assay results revealed significant anti-amoebic effects against A. castellanii. Compounds 1p and 1e showed the highest amoebicidal activity, eliminating 68% and 64% of the amoebae, respectively. These compounds remarkably repressed both the encystation and excystation processes in A. castellanii. Furthermore, the selected compounds presented minimal cytotoxic properties against human cells, as well as considerably abridged amoeba-mediated cytopathogenicity when compared to the amoebae alone. CONCLUSIONS: Our findings show that benzofuran/benzothiophene derivatives depict potent anti-amoebic activities; thus these compounds should be used as promising and novel agents in the rationale development of therapeutic strategies against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebicidas , Amoeba , Benzofuranos , Humanos , Acanthamoeba castellanii/genética , Genótipo , Benzofuranos/farmacologia
10.
Parasitol Res ; 121(9): 2615-2622, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776211

RESUMO

Intron retention (IR) refers to the mechanism of alternative splicing in which an intron is not excised from the mature transcript. IR in the cosmopolitan free-living amoeba Acanthamoeba castellanii has not been studied. We performed an analysis of RNA sequencing data during encystment to identify genes that presented differentially retained introns during this process. We show that IR increases during cyst formation, indicating a potential mechanism of gene regulation that could help downregulate metabolism. We identify 69 introns from 67 genes that are differentially retained comparing the trophozoite stage and encystment after 24 and 48 h. These genes include several hypothetical proteins. We show different patterns of IR during encystment taking as examples a lipase, a peroxin-3 protein, an Fbox domain containing protein, a proteasome subunit, a polynucleotide adenylyltransferase, and a tetratricopeptide domain containing protein. A better understanding of IR in Acanthamoeba, and even other protists, could help elucidate changes in life cycle and combat disease such as Acanthamoeba keratitis in which the cyst is key for its persistence.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Acanthamoeba castellanii/genética , Animais , Humanos , Íntrons , Estágios do Ciclo de Vida , Trofozoítos
11.
Cell Biol Int ; 46(8): 1288-1298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35673988

RESUMO

Acanthamoeba castellanii is the etiological agent of amoebic keratitis and is present in the environment in trophozoite or cyst forms. Both forms can infect the vertebrate host and colonize different tissues. The high resistance of cysts to standard drugs used in clinics contributes to the lack of effective treatments. Therefore, in this context, studies have emerged to understand cyst physiology and metabolism. Phosphate transporters are proteins responsible for the uptake of extracellular inorganic phosphate and transport to the cytosol. This work aims to verify the relationship between Pi transport and energetic metabolism in cysts of A. castellanii. The phosphate uptake ratio was higher in cysts compared with trophozoites. Recently, three sequences related to phosphate transporters have been identified in the A. castellanii genome (AcPHS1, AcPHS2, and AcPHS3); the messenger RNA expression levels of which differ depending on the amoeba life form. Pi uptake in cysts displayed peak activity at alkaline pH, whereas Pi transport in trophozoites was not affected in the same pH ranges. Cysts harbor a low-affinity Pi transport system (K0,5 and Vmax values of 1.76 ± 0.26 mM and 104.6 ± 6.3 nmol Pi × h-1 × 106 cells) compared to the trophozoite phosphate transport system. Pi transport seems important for anaerobic adenosine triphosphate synthesis in cysts, which initially occurs through the glycolytic pathway and subsequently through the pyruvate ferredoxin oxidoreductase pathway. Altogether, these results suggest that contrary to that previously postulated, cysts are active metabolic forms, and, as noted in trophozoites, phosphate uptake is important for energetic metabolism.


Assuntos
Acanthamoeba castellanii , Acanthamoeba castellanii/genética , Trifosfato de Adenosina/farmacologia , Anaerobiose , Animais , Proteínas de Transporte de Fosfato , Fosfatos , Trofozoítos/fisiologia
12.
Mol Biochem Parasitol ; 250: 111492, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714753

RESUMO

Acanthamoeba is opportunistic pathogens that cause vision-threatening Acanthamoeba keratitis (AK). Previous studies proposed the use of chloroquine (CQ) and 5-fluorouracil (5FU) as anti-Acanthamoeba agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against A. castellanii that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ nanoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. Cytotoxicity assays were performed using human keratinocyte cells (HaCaT) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60 µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against Acanthamoeba spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Nanopartículas , Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/genética , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Cloroquina/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos
13.
Parasitol Int ; 87: 102523, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34929407

RESUMO

Acanthamoeba castellanii (A. castellanii) is an important opportunistic parasite. Induction of oxidative stress by the host immune system is one of the most important defense strategies against parasites. Hence, parasites partly deal with oxidative stress by different mechanisms. Identifying resistance mechanisms of A. castellanii parasites against oxidative stress is important to achieve a new therapeutic approach. Thus, this study aimed to understand the resistance mechanisms of A. castellanii, against oxidative stress. Trophozoites of A. castellanii were treated with different concentrations of H2O2. The half maximal inhibitory concentration (IC50) of H2O2 was determined using the MTT assay. The induction of oxidative stress was confirmed by flow cytometer. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. The gene expression levels of CAT and SOD were measured by qRT-PCR. Furthermore, 3-amino-1:2:4-triazole (3-AT) and potassium cyanide (KCN) were used as specific inhibitors of CAT and SOD, respectively. Cell cycle assay and the apoptosis were evaluated by flow cytometer. The activities of SOD, CAT, GR, and GPx, showed an increase in oxidative stress. The cell cycle analysis revealed that most of the cellular population was in G0 and G1 phases. The apoptosis increased in oxidative stress conditions. Moreover, the apoptosis significantly increased after the specific inhibition of CAT and SOD under oxidative stress. The gene expression levels of CAT and SOD significantly increased under oxidative stress. A. castellanii can resist the host immune system through various mechanisms, including evoking its antioxidant enzymes. Therefore, by reducing or inhibiting the activity of the parasite's antioxidant enzymes such as SOD and CAT, it is possible to cope with A. castellanii.


Assuntos
Acanthamoeba castellanii/enzimologia , Antioxidantes/fisiologia , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/fisiologia , Acanthamoeba castellanii/classificação , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Catalase/metabolismo , Ciclo Celular , Regulação Enzimológica da Expressão Gênica , Genótipo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Concentração Inibidora 50 , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
Chemotherapy ; 67(3): 183-192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724675

RESUMO

BACKGROUND: Acanthamoeba castellanii is a pathogenic free-living amoeba responsible for blinding keratitis and fatal granulomatous amoebic encephalitis. However, treatments are not standardized but can involve the use of amidines, biguanides, and azoles. OBJECTIVES: The aim of this study was to synthesize a variety of synthetic tetrazole derivatives and test their activities against A. castellanii. METHODS: A series of novel tetrazole compounds were synthesized by one-pot method and characterized by NMR and mass spectroscopy. These compounds were subjected to amoebicidal and cytotoxicity assays against A. castellanii belonging to the T4 genotype and human keratinocyte skin cells, respectively. Additionally, reactive oxygen species determination and electron microscopy studies were carried out. Furthermore, two of the seven compounds were conjugated with silver nanoparticles to study their anti-amoebic potential. RESULTS: A series of seven tetrazole derivatives were synthesized successfully. The selected tetrazoles showed anti-amoebic activities at 10 µM concentration against A. castellanii in vitro. The compounds tested caused increased reactive oxygen species generation in A. castellanii and morphological damage to amoebal membranes. Moreover, conjugation of silver nanoparticles enhanced anti-amoebic effects of two tetrazoles. CONCLUSIONS: The results showed that azole compounds hold promise in the development of new formulations of anti-Acanthamoebic agents.


Assuntos
Acanthamoeba castellanii , Nanopartículas Metálicas , Acanthamoeba castellanii/genética , Genótipo , Humanos , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Prata/química , Prata/farmacologia , Tetrazóis/farmacologia
15.
Mol Biochem Parasitol ; 247: 111430, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813865

RESUMO

In this study, curcumin-nanoformulations were tested for anti-Acanthamoebic properties. Curcumin-loaded nanovesicles were synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and atomic force microscopy. Using amoebicidal assay, the effects of curcumin-nanoformulations were investigated against A. castellanii belonging to the T4 genotype. To determine the effects of curcumin-nanoformulations on host cells, cytotoxicity assays were performed using human keratinocyte cells (HaCat). The results revealed that nanovesicles formulation of curcumin enhanced the anti-Acanthamoebic effects of curcumin as compared with curcumin alone. The viability decreased with increasing concentration of curcumin and/or lipid-based carrier (Noisome) (FCBR18) in a dose-dependent manner. Curcumin and curcumin-loaded nanovesicles exhibited minimal cytotoxic effects against human cells in all tested concentrations. Both concentrations of FCBR18 proved effective in inhibiting amoebae excystation. In contrast, curcumin alone showed insignificant effects against amoebae excystation. Taken together, these findings clearly showed that curcumin-loaded nanovesicles show enhanced anti-Acanthamoebic efficacy without harming human cells, and these nanotherapeutics may hold promise in the development of new formulations of anti-Acanthamoebic agents.


Assuntos
Acanthamoeba castellanii , Amebicidas , Curcumina , Acanthamoeba castellanii/genética , Amebicidas/química , Amebicidas/farmacologia , Curcumina/farmacologia , Humanos , Microscopia de Força Atômica
16.
Parasite ; 28: 77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762043

RESUMO

Acanthamoeba spp. are free-living parasites that can cause severe infections such as granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK). Polyhexamethylene biguanide (PHMB) is a topical application for AK treatment. However, PHMB is not entirely effective against all Acanthamoeba strains or isolates. The mechanisms by which Acanthamoeba protects itself against extreme drug conditions without encystation are still unknown. According to a previous study, cytochrome P450 monooxygenase (CYP450MO) plays an important role in the oxidative biotransformation of numerous drugs related to metabolism. In this study, a CYP450MO fragment was inserted into the pGAPDH-EGFP vector and transfected into Acanthamoeba castellanii. We found that CYP450MO-overexpressing Acanthamoeba had higher survival rates than those of the control cells after PHMB treatment. Moreover, we also found that encystation-related genes such as cellulose synthase I (CSI), encystation-mediating serine proteinase (EMSP), and autophagy-related protein 8 (ATG8) expression levels were not significantly different between Acanthamoeba transfected by pGAPDH-EGFP or pGAPDH-EGFP-CYP450MO. We suggest that Acanthamoeba transfected by pGAPDH-EGFP-CYP450MO may not induce encystation-related genes to resist PHMB treatment. In conclusion, these findings indicate that CYP450MO may be an additional target when PHMB is used for treatment of amoebic keratitis.


TITLE: La monooxygénase du cytochrome P450 d'Acanthamoeba castellanii participe à la résistance au traitement par le polyhexaméthylène biguanide. ABSTRACT: Les Acanthamoeba spp. sont des parasites libres qui peuvent provoquer des infections graves telles que l'encéphalite amibienne granulomateuse (EAG) et la kératite amibienne (KA). Le polyhexaméthylène biguanide (PHMB) est une application topique pour le traitement de la KA. Cependant, le PHMB n'est pas entièrement efficace contre toutes les souches ou isolats d'Acanthamoeba. Les mécanismes par lesquels Acanthamoeba se protège contre des conditions médicamenteuses extrêmes sans enkystation sont encore inconnus. Selon une étude précédente, la monooxygénase du cytochrome P450 (CYP450MO) joue un rôle important dans la biotransformation oxydative de nombreux médicaments liés au métabolisme. Dans cette étude, un fragment CYP450MO a été inséré dans le vecteur pGAPDH-EGFP et transfecté dans Acanthamoeba castellanii. Nous avons constaté que les Acanthamoeba surexprimant le CYP450MO avaient des taux de survie plus élevés que ceux des cellules témoins après un traitement au PHMB. De plus, nous avons également constaté que les gènes liés aux enkystations tels que la cellulose synthase I (CSI), la sérine protéinase médiatrice de l'enkystation (EMSP) et les niveaux d'expression de la protéine 8 liée à l'autophagie (ATG8) n'étaient pas significativement différents entre les Acanthamoeba transfectés par pGAPDH-EGFP ou par pGAPDH-EGFP-CYP450MO. Nous suggérons que les Acanthamoeba transfectés par pGAPDH-EGFP-CYP450MO ne peuvent pas induire les gènes liés à l'enkystation pour résister au traitement PHMB. En conclusion, ces résultats peuvent indiquer que la monooxygénase du cytochrome P450 peut être une cible potentielle pour le traitement par PHMB de la kératite amibienne.


Assuntos
Acanthamoeba castellanii , Amebíase , Acanthamoeba castellanii/genética , Amebíase/tratamento farmacológico , Biguanidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Humanos
17.
Microbiol Spectr ; 9(1): e0036821, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431709

RESUMO

Most virus-infected cells show morphological and behavioral changes, which are called cytopathic effects. Acanthamoeba castellanii, an abundant, free-living protozoan, serves as a laboratory host for some viruses of the phylum Nucleocytoviricota-the giant viruses. Many of these viruses cause cell rounding in the later stages of infection in the host cells. Here, we show the changes that lead to cell rounding in the host cells through time-lapse microscopy and image analysis. Time-lapse movies of A. castellanii cells infected with Mimivirus shirakomae, kyotovirus, medusavirus, or Pandoravirus japonicus were generated using a phase-contrast microscope. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) and used it to analyze these time-lapse movies. Image analysis revealed that the process leading to cell rounding varies among the giant viruses; for example, M. shirakomae infection did not cause changes for some time after the infection, kyotovirus infection caused an early decrease in the number of cells with typical morphologies, and medusavirus and P. japonicus infection frequently led to the formation of intercellular bridges and rotational behavior of host cells. These results suggest that in the case of giant viruses, the putative reactions of host cells against infection and the putative strategies of virus spread are diverse. IMPORTANCE Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii, which were previously unclear. It was revealed that medusavirus and Pandoravirus japonicus infection led to the formation of a significant number of elongated particles related to intercellular bridges, emphasizing the importance of research on the interaction of viruses with host cell nuclear function. Mimivirus shirakomae infection did not cause any changes in the host cells initially, so it is thought that the infected cells can actively move and spread over a wider area, emphasizing the importance of observation in a wider area and analysis of infection efficiency. These results suggest that a kinetic analysis using the phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) reveals the infection strategies of each giant virus.


Assuntos
Acanthamoeba castellanii/virologia , Vírus Gigantes/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Acanthamoeba castellanii/genética , Vírus de DNA , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/genética , Cinética , Mimiviridae/genética , Tamanho da Partícula
18.
Parasitology ; 148(9): 1074-1082, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33966667

RESUMO

Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Genes de Protozoários/efeitos dos fármacos , Extratos Vegetais/farmacologia , Senna (Planta)/química , Transcrição Gênica/efeitos dos fármacos , Acanthamoeba castellanii/genética , Extratos Vegetais/química
19.
Korean J Parasitol ; 59(1): 67-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33684989

RESUMO

Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.


Assuntos
Acanthamoeba castellanii/genética , Acanthamoeba castellanii/microbiologia , Genes de Protozoários/genética , Legionella pneumophila/fisiologia , Simbiose/genética , Transcriptoma/genética , Acanthamoeba castellanii/enzimologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Ontologia Genética , Hidrolases/metabolismo , Legionella pneumophila/patogenicidade , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
20.
Sci Rep ; 11(1): 4183, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603075

RESUMO

Acanthamoeba castellanii, the causative agent of Acanthamoeba keratitis (AK), occurs mainly in contact lens users with poor eye hygiene. The findings of many in vitro studies of AK, as well as the testing of therapeutic drugs, need validation in in vivo experiments. BALB/c mice were used in this study to establish in vivo AK model. A. castellanii cell suspensions (equal mixtures of trophozoites and cysts) were loaded onto 2-mm contact lens pieces and inserted into mouse eyes that were scratched using an ophthalmic surgical blade under anesthesia and the eyelids of the mice were sutured. The AK signs were grossly observed and PCR was performed using P-FLA primers to amplify the Acanthamoeba 18S-rRNA gene from mouse ocular tissue. The experimental AK mouse model was characterized by typical hazy blurring and melting of the mouse cornea established on day 1 post-inoculation. AK was induced with at least 0.3 × 105 A. castellanii cells (optimal number, 5 × 104), and the infection persisted for two months. The PCR products amplified from the extracted mouse eye DNA confirmed the development of Acanthamoeba-induced keratitis during the infection periods. In conclusion, the present AK mouse model may serve as an important in vivo model for the development of various therapeutic drugs against AK.


Assuntos
Ceratite por Acanthamoeba/microbiologia , Acanthamoeba castellanii/genética , DNA/genética , Animais , Lentes de Contato/microbiologia , Córnea/microbiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Trofozoítos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...